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Mean field theory of percolation with application to surface 
effects 

K De’Bellt and J W Essam 
Mathematics Department, Westfield College, University of London, London NW3 7ST, 
England 

Received 19 August 1980 

Abstract. A probabilistic formulation of mean field theory for percolation in a general 
medium is given. The theory covers the whole density range and, above the critical density, 
provides the necessary generalisation of the random walk approximation. Application to 
surface percolation enables the calculation of scaling functions and critical exponents for the 
ordinary, surface, special and extraordinary transitions considered by previous authors in 
the context of ferromagnetism. 

1. Introduction 

A general percolation model which includes both continuum and lattice percolation has 
been formulated by Coniglio and Essam (1977). The model was one in which particles 
were distributed with density p ( r )  through a region 0. With each point of SZ a ‘capture’ 
region w ( r )  was defined and a particle at r’ was said to be reachable in a single step from 
a particle at r if r’E w ( r ) .  Low-density expansions for the pair connectedness were 
derived. 

Here we introduce a ‘field’ variable h ( r )  into the model which allows the properties 
of the percolating region above the critical density to be obtained. The mean field 
approximation is formulated and applied to systems in which properties such as the 
percolation probability and mean cluster size are spacially varying. Surface percolation 
is considered as an example of such a system and results which correspond to those of 
Lubensky and Rubin (1975) and Bray and Moore (1977) for the surface properties of a 
magnetic system are obtained. In particular it is found that the four types of transition 
described by the above authors also occur in percolation theory. A general solution of 
the mean field equation is obtained and scaling forms corresponding to the ordinary, 
surface, special and extraordinary transitions are extracted. The critical exponents for 
these transitions are summarised in table 1. 

Theumann (1979) and Carton (1980) have previously obtained results for surface 
percolation as a limiting case of the Potts model. Their approach is field theoretical and 
the mean field equation is obtained as a natural extension of that for the Ising model. A 
similar equation is obtained here using only probabilistic arguments. Our equation 
agrees with that of Theumann in the leading terms of the expansion which determine 
the critical behaviour but, not surprisingly, differences occur when the order parameter 
is no longer small. 

t Now at Department of Physics, University of Edinburgh, Edinburgh EH9, Scotland. 
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Table 1. Critical exponents. 

Ordinary Surface Special Extraordinary 

1 1 
711= r;1 -z 1 2 -3t 
71 = 7 ;  5 1 1 -It 
P I  z 1 1 3 

t 7; and y;l are not defined (see text). 

Theumann’s work was concerned only with the exponent P I  of the percolation 
probability. His results agree with ours except in the case of the extraordinary 
transition. The discrepancy is due to a difference in definition. We take the exponent of 
the leading order discontinuity (following Bray and Moore (1977)) whereas Theumann 
takes the exponent of the continuous part (following Lubensky and Rubin (1975)). Our 
value is the one which should be used in scaling relations. 

Carton (1980) obtains the mean size exponent y1 (as well as PI) for the ordinary 
transition and extends the mean field results, which are only valid above the critical 
dimension d, = 6, by calculating the coefficient of E ( = 6 - d )  in the epsilon expansion 
below d,. 

2. General formulation 

The model and its associated functions will now be defined and the general mean field 
theory equations will be derived. 

2.1. Definitions 

In percolation theory the field h( r )  which is the analogue of a magnetic field in a spin 
system may be defined by the introduction of ‘impurity’ particles (Essam 1980). These 
particles are distributed independently through SZ with density v(r), and h(r)  is the 
expected number of such particles in the capture region w(r), thus 

h(r)  = v(r‘)  dr’. 
r ’ E w ( r )  

We shall see that h (r) plays a similar role to the occupation probability of the ‘ghost’ site 
used by other authors (Griffiths 1967, Kasteleyn and Fortuin 1969, Reynolds et a1 
1977). The term particle when unqualified, will refer to the ordinary particles which 
have density p(r) .  

A particle at r’ is said to be connected to a particle at r if there is a sequence of 
particles with vectors {ro = r, rl, rz, . . . , r/ = r’} such that ri E ~ ( r , - ~ ) .  Let the cluster c(r)  
at the point r be the set of all particles connected to a particle placed at r and let w,(r) be 
the region occupied by this cluster, thus 

The percolation probability P(r) i s  the probability that w,(r) is unbounded or contains 
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at least one impurity particle; 

P(r )  = 1 -pr(uc(r)  is bounded and contains no impurity particle) 

~ ( r )  = 1 -(exp( - J u ( r f )  dr')) (2.3) 
r ' suC(r )  F 

where (. . .)F is an average over configurations of ordinary particles giving zero weight to 
configurations in which wc(r) is unbounded (F = finite). 

The pair connectedness C(rlro) may be defined as the probability that a particle 
placed at r will be connected to a particle placed at ro and wc(ro) is bounded and contains 
no impurity particle. This may be related to P(ro) by defining an indicator 

1 if r E wc(ro) rc(r, ro) = [ if not 

so that 

C(rlr0) = (yc(r, ro)&(ro)>F 

where E,(r) is the exponential factor in (2.3) and may be written 

E,(r)  = exp - v(r')yc(r', r )  dr' . ( I  ) 
If we suppose that u(r ' )  includes a 'probe' density qa(r'-r) then 

(2.4) 

The mean size S(r) of the cluster at r is the expected volume of w,(r )  in units of 
v(r) = iw(r)l given that it is finite and is related to the pair connectedness by 

1 r 

If v is constant then 

1 d  
v(r) du 

S ( r ) =  ---ln(l -P(r)) 

and if also v(r) = U for all r the h( r )  = uv = h and 

d 
dh 

S ( r )  = --ln(1 - P ( r ) ) .  

2.2. Mean field approximation 

In  the limit p ( r )  = 0, P ( r )  = 1 - and an extension to non-zero density may be 
attempted by replacing h ( r )  by an effective field h'(r). This field is obtained by counting 
ordinary particles whose cluster is unbounded as impurity particles thus let 

u ' ( r )  = v ( r ) + p ( r ) P ( r )  (2.11) 
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(2.12) 

and 

h’ ( r )  = h ( r )  + 5 p ( r ’ )P( r ’ )  dr‘. 

The percolation probability is approximated by 

r ’ s W ( r )  

P ( r )  = 1 - e-h’(r) 

= l -exp(-h( r ) ) - j  p(r ’ )P( r ’ )  dr’. (2.13) 

Carrying out the 77 derivative defined in § 2.1 the mean field theory for the pair 
connectedness is 

r ’ . s W ( r )  

if r E w (ro) 
(2.15) 

It is interesting to note that in the non-percolating region ( P ( r )  = 0) equation (2.14) is 
that satisfied by the generating function for random walks. In this region the approxi- 
mation is equivalent to keeping only the chain graphs in the low-density expansion of 
Coniglio and Essam (1977). In the percolating region the approximation may be 
thought of as a random walk model in which the steps belong to a bounded cluster with 
no impurities. 

3. Solution for a homogeneous system 

Assume now that h ( r ) ,  p ( r )  and w ( r )  are independent of r ( = h, p and w respectively) so 
that the percolation probability P is the same for all points. Also let U be the volume of 
w and n ( = pu)  be the expected number of ordinary particles in the capture region of a 
given particle. The equation which determines P is then 

ln(1-P)=  - h - n P  (3.1) 

and when h = 0 the only solution for n S 1 is P = 0. However, when n > 1 there is a 
second solution Po which has the property 

Po = 2(n - 1) n + l +  (3.2) 

*$ -+$2 + ~ ( n  - 1) = - h/(n - 1)’ (3.3) 

as may be seen by expanding the logarithm in (3.1). Writing P = In - 1IP we find 

and provided that n is sufficiently close to 1,$ depends on 6 = h/(n - 1)2 and P is of the 
scaling form 

P = In - I/$*(&) 

$*$) = f 1 + (1 + 2h)”2 

(3.4) 
where 

(3.5) 
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and 2, refers to n > 1. Differentiating with respect to h gives the ‘zero field’ mean size 
as 

(3.6) s = In - 11-l 

and with the usual definition of critical exponents for percolation (Essam 1980), 
equation (3.4) yields p = 1, y = y’  = 1, A = A‘ = 2 and S = 2. 

The pair connectedness for the homogeneous system may be found by Fourier 
transformation of (2.14) since C(r1r’) depends only on r - r’,  thus 

d;(k) = e(k)[(i -PI-’ -ne(k)I-l 

e ( k ) = -  J exp[- ik*( r ’ - r ) ]dr  

(3.7) 
where 

1 
U r ’ E W ( r )  

k + O .  1 2  2 = l - z k  R +O(k4) 

In making the expansion, the region w is assumed to have cubic symmetry and R2 is the 
mean value of ( r &  - over the capture region. In the scaling limit when k R  << 1 

nR 2 ( k 2  + [ - 2 )  
c ( k )  = 

where the connectedness length [ is determined by 

6 = In - l p 2 X ( L )  
with 

X(L) = (4n)’l2R (1 + 2 p 4  

and we have assumed 6 >> R. In particular 

In - 11-l h = 0 and n # 1 
n = 1 and h # 0 

:nR2 t 2 = -  [ (2h)-1/2 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

so that the critical exponents associated with [ are Y = Y’ = 4 and v, = a. 

4. Solution for a system which has translational sysmmetry in d - 1 dimensions 

Now consider a d -dimensional system in which the percolation probability is indepen- 
dent of all coordinates except one: the z coordinate. Examples of such systems are (i) 
an infinite system in which p or h (or both) are given functions of z ,  (ii) an infinite system 
with h and p constant but with surface density p 1  and ‘field’ hl on the special plane t = 0, 
(iii) a semi-infinite system (t 2 0) of constant density p and ‘field’ h, with or without a 
density and field on its surface, (iv) a slab of finite thickness. The following analysis is 
concerned only with the latter three for which a general solution of (2.13) must be found 
for the bulk and suitable boundary conditions applied. 

The boundary condition for ferromagnets has been discussed by Mills (1971) and a 
similar condition 

P’(0) = cP(0) - ghl/nR1 (4.1) 
is derived for percolation theory in the Appendix on the assumption that the percola- 
tion probability P ( z )  is a slowly varying function of t. The parameters c, g and R1 are 
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model dependent. g is a geometric constant. R1 is the distance of the mass centre of the 
negative half of w ( r )  from its centre and is the lattice parameter in the case of a cubic 
lattice. The parameter c - l =  A is known as the extrapolation length sixice it is the value 
of - z at which linear extrapolation of P ( z )  at the surface gives zero. It may be thought 
of as a variable since it depends on the expected numbers n and n l  of ordinary and 
surface particles in the capture region of a particle on the surface. In case (ii), c = 0 
when nl = 0, however in case (iii) it is positive for n1= 0 and only becomes negative 
when n1 exceeds a model dependent critical value. It will turn out that the value c = 0 is 
special since for c < 0 the surface can percolate even though the clusters in the bulk are 
still finite. 

A second measure of the mean size of clusters is of interest in the case of surface 
percolation. We define S o ( z )  as the mean area of intersection of the surface z = 0 with 
the domain w,(r )  of the cluster at r = (x, y ,  2). In the Appendix it is shown that 

d 
dhi 

S o ( z )  = --ln(1 -P( z ) ) .  (4.2) 

The equation satisfied by the percolation probability in the bulk is, from (2.13) 

In(1 - P ( z ) )  = - h - p  J a ( z ’ ) ~ ( z  + z ’ )  dz’  
r + r ’ e w ( r )  

(4.3) 

where a ( z ’ )  is the cross sectional area of w perpendicular to the z axis and at distance z’ 
from its centre. Differentiating with respect to h and h l  gives the mean size equations 

S(z) = 1 + p  a ( z ’ ) ( l - P ( z  + z ‘ ) ) S ( z  +z ’ )  dz’ 
r + r ’ c o ( r )  

(4.4) 

and 

s 0 ( z ) = p  J a(z’ ) ( l -P(z+z’ ) )So(z+z’)dz’ .  (4.5) 
r + r ’ e w ( r )  

Notice that (4.5) is also satisfied by P’(z )  and that the solution of (4.4) has an additive 
part proportional to So(z) .  For systems (ii) and (iii), So and P‘ both tend to zero as z + cx) 

and hence 

P‘(z )  = ASo(z) .  (4.6) 

4.1. The non-percolating region 

At sufficiently low densities in zero ‘field’ we shall see that there is a non-percolating 
region in which P ( z )  = 0. The solution for this region is identical to that obtained by 
Lubensky and Rubin (1975) for the ferromagnetic system since both are random walk 
problems. Their results were obtained by solving differential equations which may be 
obtained from (4.1), (4.2) and (4.3) by assuming the functions to be slowly varying (see 
Ej 4.2). Notice that when P ( z )  = 0 this may be avoided since (4.3) has solution 

~ ~ ( 2 )  = B e-”’ (4.7) 

where 6 is determined by 

p J a (2’) e-‘”‘ dz’ = 1 
r + r ’ E w ( r )  

(4.8) 
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Extraordinary 1 

/ /- 

and the ‘slowly varying’ approximation is obtained by an expansion of the exponential 
in powers of z ’ / t  to second order. The result is the same as (3.12). Determination of 
the constant B using 

(4.9) Sb (0)  = cSO(0) - g/nR1 
which follows from (4.1) gives Lubensky and Rubin’s result 

s 0 ( z )  = e--”/*(g/nR1)t/(l + c t ) .  (4.10) 

Since (4.4) with P ( z )  = 0 has a particular solution S ,  = (1 - n).-l (the uniform system 
solution (3.6)) the general solution may be obtained by adding a part proportional to 
So(z) and using the boundary condition 

Ordinary 

~“Speciol 

(4.11) 

(4.12) 

Notice that for c > 0, S(0) diverges at the bulk critical density n = 1 and that So(0) is 
finite but non-analytic at this point. As n increases through unity we shall see that a 
transition occurs to a state in which P ( z )  > 0 for all z.  For n > 1 the whole system is in a 
percolating state and the transition is therefore known as an ‘ordinary’ transition (see 
5 4.2). 

For c < 0 both S(0) and So(0) diverge when 1 + c t  = 0 which corresponds to a value 
of n less than one; near n = 1 the critical density n, which corresponds to this condition 
is given by 

1 2 l / ”  

1 2 

1 -n, -zn,R I C /  
= zn,(Rc) (4.13) 

where we have used (3.12). As n increases beyond n,  it will be shown that the surface 
undergoes a transition to a percolating state (P(0)  > 0) but that P ( z )  + 0 exponentially 
as z +CO. The ‘surface’ and ‘ordinary’ transition lines are shown in figure 1 where the 

“I 

/ 
e’ 

<O“ 

4’ 

Figure 1. Schematic phase diagram 
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‘extraordinary’ transition line ( n  = 1, c < 0) is also drawn. The latter corresponds to the 
onset of percolation in the bulk (P(co) > 0) in the presence of surface percolation. 

From (4.12) we see that the special value c = 0 gives S(z) = S ,  for all z whereas 
So(z) - 5 and has an exponentially decaying amplitude as z + 00. 

The percolating regions of the phase diagram are discussed in 8 4.3 along with 
critical exponents. 

4.2. General solution of the mean field equations 

In order to make progress with the case P (z )  > 0, which will arise above a critical density 
‘of ordinary particles or when h and/or h1 are positive, it is assumed that P (z )  is slowly 
varying with z .  More specifically the factor P (z  + 2 ’ )  in (4.3) is expanded in a Taylor 
series about z’ = 0 and terms higher than the second are discarded. This will be valid 
when the connectedness length is much larger than the width of the capture region so 
that the results will be asymptotically correct near the transition lines except that for the 
surface transition line n must also be close to one. Assuming further that the symmetry 
of the region w is such that the integral of the first order term is zero we obtain 

Ig(1 - P ( z ) )  E - h - nP(z )  -$nR2P”(z), (4.14) 

Similar equations may be obtained for S(z) and SO(Z)  using (4.4) and (4.5). 
If P, is the solution for the homogeneous problem (P, satisfies (3.1)) and the 

loagarithm is expanded to second order (as in § 3) then the solution of (4.14) may be 
written in the scaling form 

P ( z )  = P, + ?n (R/tI2Q(z/E) (4.15) 

where Q must satisfy 

The phase portrait (Q‘ against Q) for this differential equation is shown in figure 2. The 
arrows indicate the direction of z increasing. 

The solution curve required is selected using the boundary conditions 

(i) for z + *CO, 

(ii) for z = 0, 

Q, Q ’ + O  

Q’(0) = cE(Q(0) + a - h*d (4.17) 

where from (4.1) 

a = 2P,t2/3rzR2 and h*l = 2gh1t2/3n2R2R1c. (4.18) 

In the case of a slab of finite thickness D ,  a condition of type (ii) must be imposed at 
z = * $D. The surface percolation probability may be expressed in terms of Q(0) and a 

~ ( 0 )  = I~ (R/E)~(Q(o)  + U ) .  (4.19) 

by 

From (3.4) and (3.10), a is a function of the scaled field 6 = h/(n - 1)2, thus 

a =$[I * (1 +26)-’”] for n + 1. (4.20) 
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- I 5  t \ 
Figure 2. Phase portrait of the differential equation Q"- Q -40' = 0. 

Hence for all values of n and h 2 0, a lies in the range 0 S a G f and in particular 

0 
a =[i 

for h = 0, n < 1 
for n = 1, h > 0 
for h =0 ,  n >1. 2 

3 

(4.21) 

When n < 1 ,  a + 0 as h + 0 according to the formula 

a i h / ( l -  n)'. (4.22) 

4.3. Systems (ii) and (iii) 

In this section we consider the systems which satisfy the boundary conditions (i) and (ii) 
at z = ~7 and z = 0 respectively. In both cases only the region z L 0 need be considered 
since in case (ii) the solution in the negative region is obtained by reflection. The 
boundary condition (i) at CO implies that the required trajectory in the phase plane 
(figure 2)  must pass through the fixed point (0,O) which limits the choice to section a or 
section b of the separatrix (figure 2 )  since the required solution must approach (0,O) as 
z + W .  Integrating (4.16) we find that both sections satisfy the equation 
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Further integration yields 

cosech2(%x f 4 )  Q > O  
- sech2(& + 4 )  Q < O  

Q(x) = { (4.24) 

where 4 may be obtained from Q(0). From now on we shall only be interested in the 
surface properties. These follow from Q(0). The solution for other values of z is 
determined in terms of Q(0) by (4.15) and (4.24). 

To find Q(0) we must simultaneously solve (4.17) and (4.23) with x = 0,  thus 

- Q(O)( l  + Q(O))l’’ = c&‘(Q(O) + U  - (1). (4.25) 

The graphical solution is shown in figure 3. The straight line L representing the RHS has 
slope c( which tends to CO as n + 1 (three typical positions for L are shown). When 
h = h l  = 0, L passes through (0,O) for n < I and through (-$0) for n > 1. The four 
types of solution are shown by the small circles and the transitions referred to in 8 4.1 
correspond to the change in solution type as the slope of L is varied. Notice that 
although Q jumps in crossing the ‘ordinary’ transition line ( n  = 1, c > 0), P is continu- 
ous since it is proportional to Q f a .  The curve representing the LHS of (4.25) has slope 
- 1 at (0,O) which is why c&‘ = -I is the equation of the ‘surface’ transition curve. For 
c < 0 and I C  I&‘ > 1 it is clear that there is a solution with Q > 0 which gives a positive 
surface percolation probability P(0)  but until pz exceeds unity the bulk percolation 
probability P, is zero. When c < 0 and /c 15 < 1 the intersection having Q < 0 leads to a 
negative P(0)  which is meaningless as a probability so that the solution P(0)  = 0 must be 
chosen, The ‘extraordinary’ transition which occurs when n = 1 and c < 0 corresponds 
in figure 3 to the limit Q .+ CO since this limit is approached by the intersection of (4.23) 
with L for both n < 1 and n > 1. 

Figure 3. Graphical solution of (4.25). The four labelled cricles show the solutions 
corresponding to the four regions of figure 1 : a, c > 0 and n > 1 ; b, c > 0 and n < 1, or c < 0 
and n < n,; c, c <O and ns< n < 1; d, c <O and n > 1. 



Mean field theory of percolation 2003 

The introduction of non-zero fields corresponds to a shift in the intersection of L 
with the Q axis; the slope of L is independent of hl but depends on h through 6. In the 
following paragraphs equation (4.25) is approximated to bring out the scaling form of 
the solutions near the transition lines. The critical exponents are also determined and 
are distinguished from the bulk values by superscripts s for surface, o for ordinary, e for 
extraordinary and sp for special. The subscripts 1 and 1, 1 denote that z = 0 and PI, y1 

and yl , l  refer to P(O), S(0) and So(0) respectively. A prime on the exponent y denotes 
that the high-density side of the transition is being considered although in all cases we 
shall find that the primed and unprimed exponents are equal. The exponents are 
summarised in table 1. 

4.3.1. The surface transition (ct0, lcl.$=l). Near this transition it is appropriate to 
expand the LHS of (4.25) to second order in Q(0) and solving the resulting quadratic 
equation gives 

(4.26) 

This has a scaling form which is similar to that for the bulk transition (equation (3.4)) 
and P(0)  may be expressed in terms of the bulk scaling function p,. 

(4.27) 

Q(O) = - 1 - c t  + [ ( I  + ct)' + 2(L1 - a ) c t ~ ~ / ~ ,  n + n,. 

psIng(o) = I n  ( ~ / t ) ~ I l  - IC  ItIP*(&) 
where 

L, = (L1 - a ) c t ( 1 -  I C / ~ ) - ~ .  (4.28) 

The non-singular term arising from a in (4.19) has been dropped. Since 6 is non- 
singular as the surface transition is approached and near the transition 11 - lcl(1- 
In - nsl, where n ,  is defined by (4.13), we find using (4.22) that 

P(O)  / I  - n / n , / P ! " ) [ h l / ( l -  n/nS) ' ,  h / ( l -  n/n,)'], n+n, .  (4.29) 

The critical exponents for the surface transition are, therefore, = 1, yS = y ?  = 1, 
yS,l = yC1 = 1. It may be checked that differentiation of the form of P(0)  obtained by 
substitution of (4.26) in (4.19) gives results consistent with (4.10) and (4.12) when 
n < n ,  and that when n > n ,  the surface mean size functions S(0) and &(0) are obtained 
by replacing 1 + c t  by 11 + ct1. 

The above exponents are the same as for the bulk transition in agreement with the 
view that the surface transition is like a bulk transition in one less dimension (Lubensky 
and Rubin 1975, Bray and Moore 1977). (Mean field exponents are independent of 
dimension.) 

4.3.2. The ordinary transition ( n = l ,  c>O). When h l =  0 the ordinary transition 
corresponds to c t  + CO and Q(0) + -a .  Approximating (4.25) in this region gives the 
asymptotic form in the neighbourhood of the point n = 1, h = hl = 0 as 

Q(0) Ll - U  - (ct)- '(L1- a ) ( l +  61 - (4.30) 

and from (4.19), (4.18) and (4.22) 

P(0)  = g h l / n R l c  +t--'FLh1t2, h / ( n  - 1121 (4.31) 

which together with (3.10) implies the scaling form 

P(0)  = g h l / n R l c  + / n  - 11 (4.32) 3 / 2  ( 0 )  P ,  [h l l l n  - 11, h / ( n  - 11'1. 
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3 1 0  The critical exponents are therefore /3? = 5, 7; = 77 = t and y?,1 = 71.1 = -$. Notice 
that the finite value g/nRlc of dP(O)/dhl at n = 1 agrees with (4.10) and the exponents 

and 77 also follow from (4.10) and (4.12). 

4.3.3. The special transition (c = U ,  n ~ 1 ) .  With c = 0 equation (4.25) becomes 

Q ( O ) ( l +  Q(0))1/2 = 2gh1t3/3n2R2Rl (4.33) 

P(O)gPm+(ghl/nR,)(  (4.34) 

and approximating to first order in hl gives 

which implies that /3;” = 1,~;’  = 77’ = 1 and ySPl = 7:: = (since S,(O) - 5). In general 
we have the scaling form 

P(0)  = Pm + t-% (h1t3)  (4.35) 

= I n - ~ l ~ : ~ ’ ( h / ( n - ~ ) ~ ,  hl/ln-lj3/2). (4.36) 

4.3.4. The extraordinary transition (n = 1, c C O ) .  It follows from our general discussion 
that the extraordinary transition occurs when Q(0) -+ CO and hence P(0)  has a non-zero 
value on the transition line. This transition was originally conceived by Lubensky and 
Rubin (1975) to occur when n passes through its bulk critical value with hl = 0. 
However Bray and Moore (1977) showed that in the case of a ferromagnet a similar 
transition also occurs for fixed h l#O and arises from the existence of a non-zero 
magnetisation. The corresponding result for mean field percolation theory will now be 
obtained. 

Equation (4.25) was obtained by expanding the logarithm in (4.14) in powers of 
P ( z ) .  For the extraordinary transition this is inappropriate except as c -+ 0 and we 
therefore return to (4.14). Integrating (4.14) and using the boundary condition (4.1) 
together with P ( z )  -+ P,  and P ’ ( t )  + 0 as z + CO gives 

sgn(c)(fi(P,) - f i (P(0)))1/2 = &z1/2RP’(0) 

(4.37) 

+(P)= -(1-P)ln( l -P)-P+;nP2+hP.  (4.38) 

1 1/2 
= 5n R (cP(0)  - ghl/nR1) 

where 

Use of (3.1) gives 

+(P,) = ( n  - 1)P, - $ n P i  + h 
2 1 3  = -$(n - I)P, +?P, 

= i n  - 1l3$,(L) 

(4.39) 

(4.40) 

(4.41) 

where the asymptotic form applies to the neighbourhood of the bulk transition point 
(h = 0, n = 1). Notice that +(Pa) = 0 for h = 0 and n < 1 but otherwise 

h =0 ,  n -+ 1’ 
n = 1 ,  h+0’ 

(4.42) 

It can be seen that +(P,) has the same exponents as P, dh which is proportional to the 
mean number of clusters per unit volume in the bulk. The function +(P)  has the further 
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property $’(Pm) = 0 and passes through its maximum value when P = P,. The sign of 
the square root in (4.37) was chosen on the physical basis that P‘(0) has the sign of c. 

Now define P-(O) to be the continuation of the physical solution of 

sgn(c)(-$(P-(0)))-1’2 = ~ n ” 2 R ( c P - ( 0 ) - g h l / n R 1 )  (4.43) 

in the region ns < n < 1 to the region n > 1. Notice that P-(O) = P(0)  when n,  < n < 1 
and define SP = P(0)  - F ( 0 )  in the region n > 1. For h l  # 0 or h l  = 0 and c < 0 it may be 
shown that P-(O) has a non-zero value when n = 1 and also $(P-(O)) and $’(P-(O)) have 
non-zero values. Approximating (4.37) in the region of the bulk transition point gives 

(4.44) 

and since P-(O) has no singularity at n = 1 it is clear that the asymptotic form of SP is 
governed by $(Pa) (equation (4.41)). We deduce that p4 = 3, y?  = -1, y r l  = -3. 
Higher derivatives of SP (and hence P(0))  with respect to h l  also have the critical 
exponents of $(I“) since the dependence on h l  manifests itself only via the non- 
singular function $(P-(O)). Notice that we have defined the critical behaviour in terms 
of the part of P(0)  which is induced by the non-zero value of P, so that -y; and ~ 7 , ~  are 
not defined. 

4.4. System ( N ) ,  the slab of finite thickness 

For this system the ordinary transition takes place at a critical density n,  which is higher 
than that for the infinite system. The transition will be located by finding the point at 
which S ( z )  diverges with h = h l  = 0. Assuming that 5 and thickness D are large 
compared with the width of the capture region equation (4.4) may be replaced by 

S ( z )  f 52s”(z) = s,, n S 1 .  (4.45) 

For n < 1 the solution which satisfies the boundary conditions 

S’(  f 4D) = T c S (  * $D) (4.46) 

is 

(4.47) 

This has a finite limit as n + 1 since the pole in S ,  is cancelled by a zero of the bracket. 
For n > 1 

COS(Z/5) S ( z )  = s,( 1 - 
cos(D/ 25) - (c t )  sin(D/25) 

(4.48) 

which diverges when 

tan(D/26) = c5 (4.49) 

or for cs  >> 1, 5 2: D/T. Thus the critical density is given by 

n,  = 1 +$nrr2(R/D)2 (4.50) 

and the shift exponent A is equal to $ in agreement with the scaling prediction A = l / v  
(Fisher and Barber 1972, Ferdinand and Fisher 1969, De’Bell 1980). 
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Appendix. The mean field boundary condition and the derivation of So(r)  

A.l .  Semi-infinite system ( z a 0 )  

We suppose that the ordinary particles are distributed through the region z 2 0 with 
density p and that in addition there is a surface density p1 on the surface z = 0. To 
simplify the boundary condition we suppose that the distribution of impurity particles 
extends far enough into the z < 0 region so that the expected number of such particles in 
w ( r )  is h, even for a point close to the surface. Additional impurity particles are 
distributed over the surface with density V I  and hl is the expected number of these 
particles in w (0). 

From (4.3) 

In( 1 - P(0))  = - (h  + h l )  - 1 ( p  + p l S ( z ) ) a ( z ’ ) P ( z ’ )  dz‘ 
r ’ E w ( 0 )  

2 ’20  

= - ( h  +h l ) -n lP(O) -p  1 a(z’)P(z’)dz’.  
r ’ E  w ( 0 )  

2 ’ 2 0  

Let P‘(z) be the function P ( z )  extrapolated into the the negative z region so as to satisfy 
(4.3) for all z as though there were no surface then 

ln(1 --P”(O)) = - h - p  1 a(z’)P”(z‘) dz’. 
r ’ E  w (0 )  

Subtracting (A2) from (Al )  gives 

1 - P ( e )  
In( -pe(o)) = - hl-nlP(O)+p 1 a(z’)P”(z’)  dz’ 

r ’ E  w (0)  
z’<O 

- p  J a ( t ‘ ) ( ~ ( z ’ ) - P ~ ( z ’ ) )  dz’ 
r ’ E W ( 0 )  

2 ’ 3 0  

where n1  = p l a ( 0 ) .  Making a linear approximation to P ( z )  and P”(z)  over the region 
w ( 0 )  and assuming that P”(z)  and P ( z )  have the same value and derivative at the point 
where they first start to deviate gives 

P’(0) = cP(0) - g h l / n R 1  (‘44) 

where g = 2, 

and R1 is the distance of the centre of mass of the negative half of w ( 0 )  from the origin. 

A.2. The infinite system with a special plane (z = 0) 

For this system p and h have the same values for all z but p1 and h1 are defined as in 
(A. l )  in terms of additional particles on the z = 0 hyperplane. By symmetry P(- z )  = 
P ( z )  and P will be continuous. P’(z )  will have a discontinuous derivative with 
P’(O-) = -P’(O+). Let P“(z)  be the continuation of the positive z solution as in (A. l )  so 
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that (A2) still holds but the condition z’ 2 0 is removed from (Al) ,  and (A3) becomes 

O =  -hl-nlP(O)+p I a ( z ’ ) ( P e ( z ‘ ) - P ( z ’ ) )  dz’. (445) 
r ‘s  w (0 )  

z ’<O 

Expanding as before using P“’(O-) = P’(O+) gives (A4) with 

c = -nl/nR, and g - 1 .  (A61 

A.  3. Lattice percola tion 

The continuum formulation includes bond and site percolation by correct choice of w (r) 
(see Coniglio and Essam 1977) and m the assumption that P(r) is slowly varying on the 
scale of the lattice parameter equation (A4) may be obtained. In the particular model of 
bond percolation described by Essam (1980, appendix IV) for a semi-infinite d- 
dimensional hypercubic lattice the capture region of a given site is the 2d nearest- 
neighbour bonds, R1 is the lattice parameter, g = 2d and 

c =’( RI 1-2d:). 

For the special plane problem g = d and 

c = -dnl/nR1. (A81 
In this model it is assumed that the modification of particle density is restricted to bonds 
in the surface plane. If the density on the perpendicular bonds adjacent to the surface is 
also increased or, if site percolation is considered, the form of (A4) is unchanged but the 
calculation of c and g is more complicated. 

A.4. Derivation of So(r) from P(r) 

Let w: (r) be the intersection of w,(r) with the plane z = 0 then by definition 

where 

E&) = exp( - I v(r’)-yc(r’, r)  dr’- v 1  I yc(r’, r) dr‘) W O )  
z ’ = O  

and v(r’) = v except for the semi-infinite system with z ’ <  0 in which case it is zero, The 
other parts of (2.8) hold for So(r )  provided that the integral is restricted to z‘ = 0 and 
u(r) is replaced by a(0) .  With hl = a ( 0 ) v l  this leads to 

d 
dhi 

So(r)  = -__ ln(1 - P ( r ) ) .  
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